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ABSTRACT: Geometry optimization is an important tool used
for computational simulations in the fields of chemistry, physics,
and material science. Developing more efficient and reliable
algorithms to reduce the number of force evaluations would lead to
accelerated computational modeling and materials discovery. Here,
we present a delta method-based neural network-density functional
theory (DFT) hybrid optimizer to improve the computational
efficiency of geometry optimization. Compared to previous active
learning approaches, our algorithm adds two key features: a
modified delta method incorporating force information to enhance
efficiency in uncertainty estimation, and a quasi-Newton approach
based upon a Hessian matrix calculated from the neural network;
the later improving stability of optimization near critical points. We
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benchmarked our optimizer against commonly used optimization algorithms using systems including bulk metal, metal surface, metal
hydride, and an oxide cluster. The results demonstrate that our optimizer effectively reduces the number of DFT force calls by 2—3

times in all test systems.

1. INTRODUCTION

Geometry optimization is a common task in computational
chemical modeling. Optimization typically aims to find stable
atomic configurations using algorithms including conjugate
gradient descent or quasi-Newton approaches. From binding
energy calculations to modeling reaction pathways, many
physical properties can be determined from critical points on
potential energy landscapes, describing atomic structures of
interest. The bottleneck in these optimizations is the iterative
need for quantum chemical calculations of energies and forces.
Therefore, it is important to develop algorithms that increase
optimization efficiency and reduce the number of force calls
required in the optimization process.

Machine learning potentials (MLPs) are playing an
increasingly prominent role in advancing computational
physical sciences. A plethora of MLP approaches have been
developed, including artificial feed forward neural networks
(ANN),l_13 Gaussian approximation potentials (GAPs),'™'°
Gaussian process re§ression (GPR),'*~*° %raph neural net-
works (GNNs),”' ™* linear models> ™" using spectral
neighbor analysis (SNAP) or moment tensor potentials
(MTP), among others. These MLPs have demonstrated
accuracy comparable to ab initio approaches with reduced
computational cost.

Utilizing MLPs as surrogate models of the potential energy
surface (PES) to guide the optimization procedure has become
an attractive approach to accelerate computational tasks such
as transition state searches, and geometry optimiza-
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. 16,19,20,23,24,31-34 .
tion, 7T Peterson employed an ANN potential

to accelerate saddle point searches with the nudged elastic
band method.** Koistinen et al. used GPR to reduce the
number of energy and force evaluation during transition state
1920 Ulissi et al. developed an active learning
approach that leverages prior information from pretrained
GNN models to accelerate structural relaxation.””** These
algorithms typically use an MLP model trained on-the-fly and
switch to density functional theory (DFT) calculations when
the uncertainty of the MLP model exceeds a threshold value.
Following each switch, the new data point from the DFT
calculation is then included in the training data to update the
MLP model. Thus, a key aspect of these algorithms is
uncertainty quantification, which ensures that model pre-
dictions are accurate and not unphysically extrapolating.
Currently, a variety of uncertainty quantification methods
have been proposed, including but not limited to ensemble
methods,»3"3%¢ Bayesian neural networks (BNNs),*”® the
delta method,*™* among others.”” The ensemble method
measures uncertainty as the standard deviation of the

searches.
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Figure 1. (a) Potential energy variation with the O—O bond length for the molecular O,. Blue and red points represent training and testing data,
respectively; (b) uncertainty estimates from our modified delta method (left) and the pure energy-based delta method (right). Square root values
for the uncertainty from our method and loss are shown to ensure they have the same unit as the uncertainty obtained from the pure energy-based
method. Note that the loss is positive so there are two branches corresponding to compression and stretching of the molecule. The training data
set, testing data set, ML model parameters, and raw output files are given in the Supporting Information.

predictions from multiple simultaneously trained ML models.
This method has been effective in identifying extrapolation
regions when trained with large data sets. However, individual
ensemble models often need to be large, for example, Peterson
used two hidden layers of S0 neurons each in their neural
network model. Additionally, a relatively large ensemble size
(>10) is needed to ensure reasonable accuracy.3l’35 In
practice, BNNs train parameters that minimize the mean
squared errors between the model predictions and target
variable, but also penalize large deviations of the model
parameters from some prior assumed distribution. This
training procedure allows for estimation of variance of the
optimized model parameters, which then can be propagated to
model predictions.

More recently, Kitchin and Zhan proposed a delta method
for uncertainty quantification.”’ The delta method aligns
model parameters obtained by minimizing the mean squared
errors (MSE) with those obtained by maximizing the log
likelihood of errors being Gaussian distributed around a mean
of zero. In this approach, model uncertainty is derived from the
gradient and Hessian matrix of the model. A significant
advantage of the delta method is that it requires only one
model, eliminating the need of additional models as in the
ensemble method. However, this method has not yet been
incorporated into active learning approaches. Integrating the
delta method into ML-based optimization algorithms is a
natural step forward.

10023

In Kitchin’s delta method, only energy information is
included for uncertainty estimation. In practice, MLPs typically
fit both energies and forces. Identifying extrapolation with
force information can improve the uncertainty quantification.
Another issue related to ML-based optimization algorithms is
that the MLP can struggle to achieve sufficient accuracy in
forces to reach standard convergence criteria near critical
points (i.e., saddle points or local minima), defined here as a
maximum atomic force of <0.05 eV/A. However, optimizing
precisely in low-force regions (also described as harmonic
regions) is also crucial and often requires a considerable
number of force evaluations. Further lowering of the
convergence criterion also leads to convergence problems
due to limited resolution of the ML model and errors in the
predicted force.

In this work, we propose an uncertainty-based ML-DFT
hybrid framework to accelerate geometry optimization.
Following Kitchin’s method, we employed a modified delta
method incorporating both energy and force information to
enhance uncertainty estimation. Our results on benchmark
systems demonstrate that our algorithm exhibits significant
improvement compared to commonly used geometry opti-
mization algorithms. Furthermore, we use the Hessian matrix
calculated from MLPs as a preconditioner in a quasi-Newton
method to solve the convergence problem in harmonic (low
force) regions near critical points. This strategy enables stable
convergence of atomic systems to atomic forces below 0.01

eV/A.
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2. METHODS

2.1. Modified Delta Method as Uncertainty Measure
in Active Learning. Inspired by Kitchin’s work, we propose a
modified delta method including both energy and force
information for uncertainty evaluation. Based on the delta
method, the uncertainty (6(G,0)) of a ML model with
optimized parameters (¢) is calculated using the following
equation, where G represents fingerprints of a training image.

8(G, 0) ~ \JoVsMLT(G, O)H*V;MLT(G, 0) 1)

Two modifications are made to Kitchin’s approach to
include force information. First, the Moore-Penrose pseudoin-
verse of the Hessian (H") of the true loss function (eq 2) is
applied, rather than only the energy term.

M true ML 2
EM - E
Loss= Y a[u] -
~ N, 3N,

true ML\2
(F™ - F

1

=1 i=1 (2)

Here E{" and E{™ are the ML and true energy of image k, Fy'™"
and F*° are the ML and true force of atom i along direction ,
with [ representing the x, y, or z direction in the Cartesian
coordinate system, M is the number of training images, N is
the number of atoms in image k, and @ and f are energy and
force coeflicients, respectively. Note, in practice the
eigenvalues of the loss Hessian may need to be shifted due
to optimization issues; details are included in the Supporting
Information. R
Second, we redefine the machine learning term (MLT(G,0))
of an image whose uncertainty is estimated as the sum of an
energy term and a force term (eq 3). The derivative of these
terms with respect to the model parameters 6,

(V,MLT(G, é)) is substituted into eq 1 to obtain uncertainty
of the prediction. Note that the uncertainty we calculated here
has units of eV?, the same as the loss function defined in eq 2.
This is different from the uncertainty (in unit of eV) obtained
using Kichin’s method, as shown in ref 43.

S G Y R N
MLT(G, 6)_a[N ] +ﬂ[zz N "

k i=1 i=1I

The key modification is that the Hessian of the loss function
and the MLT(G,0) function used to propagate uncertainty
both have force information. We compare our method with
Kitchin’s method for an O, molecule in a box, with results
summarized in Figure 1. The training region is collected for the
0—-0 bond length (Rpo) between 1.05 and 1.35 A, whereas
the test set includes points from 0.95 to 1.45 A. For each point,
the loss is calculated using eq 2. The purely energy-based
uncertainty estimates have significantly different slopes for
points in the compressed bond regions (Roo < 1.05 A) and
stretched bond region (Rgo > 1.35 A). This is because large
forces in the compressed region significantly affects the loss
value. The correlation inconsistency observed in the com-
pressed and stretched regions poses a challenge in practical
applications. Inclusion of force information in our method
mitigates this problem. The calculated uncertainty for both
regions exhibits a consistent correlation with true loss values.

It is important to mention that the correlations in Figure 1
do not have a slope near unity. This is a consequence of an
unknown calibration of the covariance matrix, which is the
inverse of the loss Hessian scaled by a calibration constant. In
principle, this constant can be tuned if desired. We keep the
calibration constant as the optimized loss value of the neural
network, as suggested by Kitchin. This constant does not play a
critical role in determining whether an image is uncertain.
Instead, a relative ratio to the maximum uncertainty of the
neural network predictions on any training point is used as the
uncertainty threshold (8y,) to decide if an image is sufficiently
uncertain,”"®

5 = e-max (5] @)

Here & is a constant that controls the reliability of the
prediction, and §; is the uncertainty from eq 2 on any image in
the training set. This approach is based on the assumption that
the uncertainty and loss values of the image are linearly
correlated. If the uncertainty exceeds 0y, defined in eq 4, that
indicates the new image is beyond the training region.
Consequently, the model needs to be retrained. Otherwise,
the new image is considered close to the training region and
the results from the model are reliable. In this work, the value
of £ has been kept constant at 1.50 which exhibits best
performance for the Au FCC (643) system (Figure Sla). In
contrast, an energy-based uncertainty method required a much
larger ¢ to achieve comparable performance (Figure S1b) due
to the absence of force information.

2.2. Uncertainty Guided Active Learning Geometry
Optimization Algorithm. The active learning framework for
geometry optimization is illustrated in Figure 2. The optimizer
consists of two main parts: uncertainty-guided ML optimiza-
tion (denoted as ML + UQ optimizer) and ML-Hessian
preconditioned refinement. The uncertainty-guided optimiza-
tion employs the delta method for uncertainty estimation to
systematically refine the MLP and achieve a soft convergence
to 0.05 eV/A. The process begins with a single-point DFT
calculation of the system to obtain the energy and forces.
Subsequently, an MLP is trained, and uncertainty threshold
(84,) is calculated using eq 4. One geometry optimization step
is then performed on the ML PES and the uncertainty (5) of
the MLP on the new geometry is calculated. If § exceeds Jy,
the DFT forces and energy of the new geometry is calculated,
and the MLP is refined using the new geometry data. This
iterative process continues until the system has loosely
converged with a DFT maximum atomic force (Fhr,) below
0.05 eV/A. To mitigate model fitting errors, a tighter
convergence criterion of 0.01 eV/A is used for the
optimization on the machine learning PES.

Once the optimizer has loosely converged, the ML Hessian
of the potential energy is calculated and used to precondition
the BFGS optimizer in the low force region to a tighter
convergence to the critical point (Foy < 0.01 eV/A). Near the
minimum, the ML models start to suffer from insufficient
precision. In our hybrid method, we switch to accurate forces
from DFT, but use the MLP to calculate the Hessian of the
potential energy to precondition the BFGS algorithm to
accelerate convergence in the harmonic region.

Two safety checks are included to consider possible failures
of the MLP in describing the PES. If a maximum number of
optimization steps on the surrogate model is reached (set to
100 by default) without the system reaching (Fyy) < 0.01 eV/
A, the last image is used to refine the ML model. This ensures
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Figure 2. Uncertainty-method guided active learning geometry
optimizer framework. The unit of force is eV/A.

that the algorithm terminates, even if the surrogate model is
not sufficiently smooth to reach a maximum atomic force of
0.01 eV/A. Additionally, if the number of failures (ng,;) reaches
a specific threshold value (ny, = S by default), the ML model is
considered unreliable, and a switch to pure DFT is made (gray
dashed line in Figure 2). Failure of the MLP is flagged when
the ML maximum atomic force (F*L) on a given geometry is
below 0.01 eV/A, yet Forl on the same image is above 0.05
€V/A. This safety check is for rare cases, such as when the ML
input parameters are insufficient, or the MLP cannot
approximate the true PES. This safety check was not triggered
in any of the tests or examples presented here. The primary
active learning framework presented here was sufficiently
accurate to minimize to the DFT minimum at the tighter
precision (0.01 eV/A) for all systems tested.

2.3. Application Systems. Our algorithm was tested on
five systems: an Rh FCC (211) surface, Au FCC (643) surface,
bulk W BCC with a vacancy, Pd;3;H, cluster, and a Pd,,O,
cluster. The Au FCC (643) surface initial structure was
obtained from Kitchin’s work.”" Initial structures for other
systems were randomly displaced from the corresponding local
minimum using displacements drawn from a normal

distribution with a standard deviation of 0.1 A. Upon
displacement, each structure has a starting Fori > 0.65 eV/A.

DFT calculations were done with the Vienna Ab initio
Simulation Package (VASP),**** with the Perdew—Burke—
Ernzerhof generalized gradient approximation exchange
correlation funtional.** Input files and output results for each
system are given in the Supporting Information.

2.4. Optimizer Hyperparameters. For our tests, we used
a Behler Parinello neural network (BPNN), as implemented in
the PyAMFE package. A key challenge with neural network-
based methods is the need to optimize the various hyper-
parameters for each system of interest. For user friendliness
and generality, we have attempted to keep as many
hyperparameters constant across systems as possible. The
force coefficient (the relative weight of force and energy in the
loss function) has been kept constant at a value of 1.40 A%
Each machine learning model was trained to a maximum of
2500 iterations steps or until the loss gradient of the neural
network was below 0.0001 eV> for each parameter. The
activation function used was tanh. The ML training was done
with L-BEGS, as implemented in Scipy.”” For BEGS
preconditioning, the ML Hessian was modified to be positive
definite (details provided in the Supporting Information). In
general, the eigenvalue shift ratio used for all the systems in
this work was 0.04, except for the Pd,,O, cluster, where we
used 0.1. A table of the hyperparameters is available in the
Supporting Information (Table S1).

The focus in this work has been on active learning for
geometry optimization starting from a single configuration.
When optimizing a structure for which similar minimizations
have previously been done, sharing information over previously
trained models can lead to further speed up, as shown by
Kitchin and Ulissi.”****!

3. RESULTS AND DISCUSSION

3.1. ML + UQ Optimizer to Accelerate Geometry
Optimization in the High Force Region. We initially tested
the uncertainty-guided ML optimization algorithm on a Au
FCC (643) surface and a Pd;;H, cluster. Our method relaxes
the structure to a loose convergence criterion of 0.05 eV/A. To
ensure reproducibility, we conducted ten minimization runs for
each system, all starting from the same initial configuration and
identical neural network hyperparameters, but with random
initializations of the neural network weights and biases.

Figure 3 shows the optimization progression for the Au FCC
(643) surface and the Pdj;H, cluster, comparing the
uncertainty guided ML optimizer with the L-BFGS”’ optimizer
implemented in the VTST code™ (denoted as VTST—
LBFGS). Clearly, the uncertainty-guided ML optimizer
outperforms the VTST—LBFGS optimizer. For Au FCC
(643) and Pd;;H, the VIST—LBFGS optimizer takes 17
and 38 DFT steps respectively to converge to 0.05 eV/A.
Jumps in the force and energy are observed during this
optimization procedure. In contrast, the ML optimizer shows a
monotonic drop in the energy and forces and requires 7 and 18
DFT evaluations to achieve the convergence criterion (in one
of the ten sample runs), respectively. This reduces the DFT
force calls by 59% for the gold system, and 53% for the
palladium hydrogen cluster.

We further compared the ML + UQ_optimizer with other
DFT optimizers, including the LBEGS," quick-min (QM),>’
and conjugate gradient descent (CG)>> optimizers as
implemented in the VIST code,*® BFGS,” MDMin, and
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Figure 3. Variation of the potential energy (left) and maximum atomic force (F,,,) (right) with the number of DFT evaluations during the
optimization of the (a) Au FCC (643) and (b) Pd,3H, system using the ML + UQ and pure DFT using the L-BFGS optimization method
implemented in the VTST code.*® The inset images represent the corresponding minimum structures. Gold, dark blue and white balls are Au, Pd

and H, respectively.
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Figure 4. Comparison of number of DFT force calls between ML + UQ_optimizer (averaged over 10 runs) and the pure DFT method in
optimizing to Forr < 0.05 eV/A, for the five systems tested. Light blue, turquoise, gold, dark blue, red and white circles are W, Rh, Au, Pd, H, and O

respectively.

FIRE*® methods as implemented in ASE,”" and VASP’s***
damped-MD and RMM~—DIIS implementations. The perform-
ance of our optimizer, in comparison to the most efficient pure
DFT optimization method for the respective system, is
summarized in Figure 4 (representative convergence plots for
each system are shown in Figure S2).

The Rh FCC (211) surface, consisting of 36 atoms in a
hexagonal arrangement, is relaxed by MDMin from ASE in 11
DEFT force evaluations, while the ML + UQ optimizer takes an
average of 4.5 DFT force calls. The 95-atom BCC bulk
Tungsten system with a vacancy is considered a more

10026

challenging system due to the need to include second
neighbors for an accurate description of the PES. The ML +
UQ optimizer requires an average of only 4.1 DFT force calls
to converge, around half the number of that required for
RMM-DIIS, which is the most efficient DFT optimizer for this
system. For the Au FCC (643) surface, RMM—DIIS requires
12 DFT calls, whereas the ML + UQ optimizer takes on
average 6.9 DFT evaluations.

The presence of two distinct elements in the cluster systems
leads to a wider range of bond frequencies and force constants,
making optimization more challenging. For the Pd ;H, cluster,
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VTST—LBFGS requires 38 DFT calls, whereas the ML + UQ
method is able to converge in 18.1 single point calculations.
For the Pd,,O, cluster, among the DFT optimizers employed,
the ASE—BFGS takes least number of force calls and converges
in 23 force calls, while our ML + UQ_optimizer reduces the
number of force calls to 17.1. Despite the higher number of
evaluations compared to the periodic systems, the ML + UQ
method significantly decreases the number of DFT calls
required.

The performance of the ML optimizer can depend on the
random initializations of neural network parameters, poten-
tially affecting stability of the ML + UQ_optimizer. However,
based on 10 runs for each system, the variation in number of
force calls is small (as shown by magenta lines in Figure 4).
Therefore, the ML method with modified uncertainty
quantification consistently provides reliable acceleration across
all systems, effectively converging from the high force region to
the harmonic region.

To gain deeper insight into how the algorithm works, we
revisited the optimization procedure for the Rh(211) system
given its relatively lower computational cost compared to the
other systems. Figure S shows the variation in energy,
maximum force error, uncertainty and uncertainty tolerance
over optimization steps, respectively. Note that optimization
on the ML surrogate model (denoted as the MLP loop) is
counted in the optimization steps.

As shown in Figure Sc, the first three MLP refinements were
triggered (marked as 1, 2 and 3) when the uncertainty
exceeded the tolerance value (red line in Figure Sc). Although
the potential energy from the NNP model aligned well with
the DFT reference in the first two triggers (Figure Sa), the
force error increased significantly, indicating poor reliability of
the MLP. Upon each refinement, the force error consistently
decreased and rose again as the structure moved away from the
training region, leading to the next refinement (Figure Sb).
Thus, each trigger of MLP refinement corresponds to the
maximum force error in that MLP loop.

The fourth refinement of the MLP was triggered not due to
uncertainty, but because the maximum number of optimization
steps (set to 100) using the MLP was reached without
achieving the machine learning converge criterion. The
resulting DFT maximum atomic force (0.062 eV/A) was
higher than the DFT convergence criterion of 0.05 eV/A, so
this structure was considered uncertain, and was added to the
training set for model refinement. Overall, our uncertainty
quantification algorithm accurately identified points for model
refinement. As optimization proceeded, the uncertainty
tolerance decreased consistently, indicating that the model
became increasingly accurate in describing the system’s local
PES.

3.2. ML-Hessian Preconditioned Optimizer for Geom-
etry Refinement. We have shown that the ML + UQ
optimizer efficiently accelerates convergence of the atomic
systems to the harmonic region with atomic forces below 0.05
eV/A. However, further relaxation of geometry to lower
convergence criterion is challenging. In the harmonic regions
where forces are small, localized models such as in the BPNN
can lack the precision needed to accurately converge to the
minimum. To mitigate this problem, we switch to a ML-
Hessian preconditioned BFGS optimizer and conduct
optimization using the true energy and forces of the system.
Figure 6 shows the comparative performance (orange bars) of
pure DFT optimizers and our ML-Hessian preconditioned
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BFGS optimizer in converging from the harmonic region (Fory
< 0.05 eV/A) to the precise minimum (Fooy < 0.01 eV/A) for
the Au FCC (643) and Pd;;H, cluster systems. This is an
extension of Figure S3, where the DFT optimizers are not reset
so that the memory from previous data points are retained for
curvature approximating methods including BFGS or CG. The
blue bars represent the number of DFT force evaluations
required to converge the system to the harmonic region, in the
same way as in Figure S3.

Figure 6 shows that the ML-Hessian preconditioned BFGS
optimizer facilitates convergence for the Au FCC (643) surface
and Pd;H, systems to minima with a tighter criterion of 0.01
eV/A. For the Au FCC (643) surface, it requires only 2 extra
steps for convergence, much fewer than 11 steps needed for
the RMM—DIIS optimizer, which is the most efficient DFT
optimizer for this system. For Pd;3;H,, the optimization
performance in the harmonic region is similar between
VTST—LBFGS (the most efficient pure DFT method) and
ML-Hessian preconditioned BFGS. But this is still significant
because the ML Hessians are obtained from the ML force field
trained on an average of 18.1 DFT points, whereas the LBFGS

https://doi.org/10.1021/acs.jctc.4c00953
J. Chem. Theory Comput. 2024, 20, 10022—-10033


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00953/suppl_file/ct4c00953_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c00953/suppl_file/ct4c00953_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00953?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00953?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00953?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00953?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00953?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
60
(a) m FOT-0.05(cV/A)

50 | - FREL=0.05 t0 0.01(cV/A)

m 46 46

i~

g 39

£ 40

3 37

43}

£ 30

&

g 23

e

2 20

g

z
10 8.9

0_
LBFGS-VTST BFGS-ASE MDMin-ASE FIRE-ASE  QM-VTST CG-VTST RMM-DIIS damped-MD ML+Hessian
Optimizer Type

(b)

100

0N -0.05(cV/A)

e FRRL=0.05t0 0.01(eV/A)

Number of DFT Evaluations
— |3 W B wn D ~ 0 el
(=] (=} (=] (=} (=] (=} [=} (=] (=}
u IS
= ‘
L D
=
7]
T

0_
LBFGS-VTST BFGS-ASE MDMin-ASE FIRE-ASE

QM-VTST  CG-VTST damped-MD ML+Hessian

Optimizer Type

Figure 6. Comparison of number of DFT force evaluations between the ML-Hessian preconditioned optimizer (averages and sample standard
deviations from 10 random runs) and other popularly used optimization methods for (a) the Au FCC (643) (b) Pd,3H, cluster systems. Gold, dark
blue and white balls are Au, Pd and H, respectively. RMM—DIIS for Pd;;H, (not shown) does not converge in 200 DFT evaluations.

25 T
Most Efficient DFT 23.0
Il ML -Hessian BFGS

» 20
=}
.S
g
s 12.10
$15
m
~
23
2
o 10T+——
5]
e
g
z

5

2.0 1.90 2.0 1.80
Rh FCC (211) W-vacancy BCC Pd904 Cluster

Figure 7. Comparison of the number of DFT calls needed for convergence from 0.0S to 0.01 eV/A using the ML-Hessian preconditioned BFGS
optimizer (averaged over 10 runs) and the most efficient pure DFT method for the Rh FCC (211), W-vacancy BCC and Pd,,0, cluster. Turquoise,
light blue, dark blue and red circles are Rh, W, Pd and O, respectively.

Hessian has been approximated using 38 DFT points along the
minimization trajectory.

We also continue the minimization for the Rh FCC (211),
W-vacancy BCC and Pd,,O, cluster (Figure S4) to a tighter
tolerance using the DFT and ML-Hessian preconditioned
BFGS optimizer; the number of DFT calls is summarized in
Figure 7. Using the most efficient pure DFT method, 2 extra
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steps are needed to converge Rh FCC (211) and W-vacancy
BCC systems from 0.05 to 0.01 €V/A. The ML-Hessian BFGS
optimizer takes 1.9 steps for Rh FCC (211) and 1.8 steps for
W-vacancy BCC on average over 10 runs. For the Pd,,0,
cluster, for the overall most efficient DFT method (the FIRE
method in Figure S4c) requires an additional 23 steps in the
harmonic region to reach the precise minimum. Remarkably,
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with ML-Hessian as preconditioner, it takes only 12.1 steps on
average over 10 runs. All ten runs for each system successfully
minimized to the DFT-verified minima. More specifically, the
maximum atomic displacement between each of the minima
from our hybrid optimizer and the corresponding conjugate
gradient minima was less than 0.05 A, and the potential energy
difference was less than 0.01 eV (see details in Figure SS).
Overall, the BFGS optimizer with ML-Hessian as a
preconditioner accelerates convergence of systems within the
harmonic region.
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The above tests in the harmonic region continue from
previous individual simulations and start with different
geometries, which can potentially affect performance. To
further validate our results, we use the ML + UQ optimizer to
converge the system to the harmonic region, and then switch
from that geometry to one of the following methods: (i) a
fresh VTST—LBFGS optimization, (ii) a Quick-Min opti-
mization, or (iii) our ML-Hessian preconditioned BFGS
optimization. This ensures all simulations start from the
same geometry, eliminating performance dependence on the
initial geometry.
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Fgf;{ < 0.01 eV/A, for all systems. Surrogate model training and energy/
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The VIST—LBFGS optimizer initializes the Hessian using a
finite-difference steepest descent step and updates the Hessian
with geometries encountered during optimization. Quick-Min
is a force-based first order optimizer. The results are
summarized in Figure 8. On average, the ML-Hessian BFGS
approach is the most eficient, followed by the VIST—LBFGS
optimizer. The first order Quick-Min method has the lowest
performance due to a limited step size in the harmonic region
caused by small atomic forces. Moreover, the ML-Hessian
BFGS approach is more stable, as indicated by a smaller
variation in the 10 runs (colored error bars in Figure 8).

We have demonstrated that our ML-Hessian preconditioned
BFGS optimizer shows accelerated or similar quadratic
convergence in harmonic regions compared to second order
DFT methods, despite having access to fewer DFT
configurations and the corresponding forces and energies.
We attribute this performance to the ability of the ML
potential to actively learn the true curvatures of the system
with sufficient accuracy to help with the preconditioned quasi-
Newton methods, despite having no explicit Hessian
information included in the training process. Figure 9
compares the ML and DFT Hessian matrices, their
eigenvalues, and the resulting frequencies for Pd;;H, upon
convergence to the harmonic region. The ML Hessian matrix
(right panel in Figure 9a) shows remarkable agreement with

the DFT Hessian (left panel in Figure 9a). Eigenvalues and
frequencies calculated from the ML force field also align well
with those obtained from the reference DFT method. Similar
agreement between ML and DFT Hessian information is
observed for other systems (Figures S6—S9). Consequently,
after ensuring positive definitiveness, the ML Hessians serve as
good preconditioners for the BFGS optimizer, accelerating
convergence in the harmonic regions.

3.3. Overall Performance of the Uncertainty Guided
ML Algorithm. To summarize, the full (ML + UQ + H)
method ensures accuracy of the MLP and convergence of the
system to the harmonic region with Forl < 0.05 eV/A and
then uses the ML-Hessian preconditioned BFGS optimizer to
further relax the geometry until For! < 0.01 eV/A. Figure 10
summarizes the total number of DFT force calls and total
runtimes required for the method to optimize each system as
compared to the most efficient benchmarked DFT optimizer
and GPR-based active learning optimizer developed previ-
ously.”* For the periodic systems, we have compared our
hybrid optimizer with universal sparse preconditioners>
(summarized in Table S2). The full ML optimizer rapidly
converges all systems below FoiL! of 0.01 eV/A, including
simple metallic surfaces and multielement cluster systems.
Compared to the most efficient DFT method for each system,
the ML + UQ + H approach shows a 2—3 times DFT force call
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saving and has small variation in the number of DFT force calls
over 10 independent runs (Figure 10a). Moreover, our ML
approach exhibit more consistent improvements in reducing
the number of DFT calls compared to the GPR-based
optimizer.

The ML + UQ + H optimizer reduces the number of DFT
evaluations during structure optimization, but it shows limited
improvement in total runtime (Figure 10b). A similar issue is
observed with the GPR-based optimizer developed previ-
ously®* (Figure 10b), which is less efficient than our ML + UQ_
+ H optimizer. This is primarily due to inefficient
preconditioning during the SCF calculations, stemming from
significant structural differences between successive iterations.
This issue is likely common to optimizers relying on ML
surrogate models. Further method development, such as the
efficient reuse of the electronic density and KS orbitals, needed
to improve overall computational efficiency, will be inves-
tigated in future work. The UQ algorithm developed here is
particularly valuable for efficient on-the-fly training of surrogate
models in simulations requiring extensive DFT calculations,
such as molecular dynamics simulations. Additionally, the ML-
Hessian preconditioned BFGS provide a reliable acceleration
in optimizing with on-the-fly optimizers near critical points.

For effective and robust application of the algorithm
developed here, efforts have been made in this work to
establish reliable default values for the hyperparameters
associated with the ML-based optimization. These hyper-
parameters include neural-network structures, type of
activation function, etc. Most of the hyperparameters are
independent of the application system and have been kept
constant (refer to section “Optimizer Hyperparameter” for
details). In other systems, adjustment of these hyperparameters
may be required, particularly those associated with the
symmetry functions (fingerprints). For a better understanding
of hyperparameter selection more benchmarking is required.

4. CONCLUSION

In this work, we developed an uncertainty-guided ML-DFT
hybrid geometry optimizer that provides reliable acceleration
in both the high- and low-force regions. Improving upon
previously reported active learning approaches, we imple-
mented an atomistic force-informed delta method for
uncertainty estimation. This method demonstrates an efficient
and easily applicable single model-based approach, thus
eliminating the need for multiple models. Guided by this
modified delta method, the ML model can be effectively
refined and accelerate the convergence of atomic systems from
high-force region to the low-force region (the harmonic
region). Applying the ML Hessian as a preconditioner for the
BFGS optimizer ensures the convergence of atomic systems to
precise minima from the harmonic region, which is hard to
achieve with a traditional active-learning approach.

We benchmarked our hybrid optimizer against eight
commonly used optimizers and a GPR-accelerated active
learning method for minimizing five different systems. The
hybrid optimizer converges to the minimum for each system
and offers a stable 2—3 times reduction in DFT force
evaluations compared to the system-specific most efficient
DEFT optimizer. Our results suggest that further advancements
in efficiently reusing electronic density and Kohn—Sham
orbitals are needed to enhance overall computational
efficiency.
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