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ABSTRACT
We introduce a data-driven potential aimed at the investigation of pressure-dependent phase transitions in bulk germanium, including the
estimate of kinetic barriers. This is achieved by suitably building a database including several configurations along minimum energy paths, as
computed using the solid-state nudged elastic band method. After training the model based on density functional theory (DFT)-computed
energies, forces, and stresses, we provide validation and rigorously test the potential on unexplored paths. The resulting agreement with
the DFT calculations is remarkable in a wide range of pressures. The potential is exploited in large-scale isothermal-isobaric simulations,
displaying local nucleation in the R8 to β-Sn pressure-induced phase transformation, taken here as an illustrative example.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0214588

I. INTRODUCTION

In recent years, there has been a remarkable transformation
in how we approach atomistic simulations, and at the forefront
of this change is the increase in the popularity of machine learn-
ing interatomic potentials (MLIPs). This innovative approach offers
a way to significantly reduce the computational cost of ab initio
calculations, typically based on density functional theory (DFT),
with a great accuracy/efficiency trade-off allowing us to study larger
systems and/or longer time-scale processes. The remarkable effi-
ciency and precision of MLIPs have made them essential tools,
gaining widespread recognition and adoption for exploring various
atomistic systems.1–11

Our objective in this work was the development of an inter-
atomic potential suitable for investigating crystal phase transi-
tions, taking germanium as a particularly interesting system due

to its potential applications.12 The emphasis lies in showcas-
ing and testing the developed potential, rather than conducting
a comprehensive study of phase transitions in Ge. It is impor-
tant to note that this endeavor necessitates the creation of an
MLIP capable of accurately representing pressure-dependent kinetic
barriers. Merely training the MLIP relying solely on configura-
tions close to equilibrium and snapshots from molecular dynam-
ics near metastable crystal structures would not provide adequate
insight into transition mechanisms. This limitation arises because
crucial saddle points defining kinetic barriers would be under-
represented or excluded from the training dataset, leading to
unreliable predictions. To address this, we incorporated configu-
rations into our dataset along minimum energy paths obtained
through solid-state nudged elastic band (ssNEB) calculations
under varying stress conditions, to provide insight into transition
barriers.
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Empirical potentials, including Stillinger-Weber,13,14 Tersoff,15

and modified embedded-atom method (MEAM),16,17 have been
developed to significantly reduce computational costs compared to
the DFT calculations, but may be unreliable when dealing with
metastable phases18 and, more generally, with kinetics.

The interesting electronic properties of germanium, such as
high intrinsic electron mobility, make it useful for novel high-speed
electronic and photonic devices. In addition, its narrow bandgap
enables efficient infrared detection in optoelectronic devices, ren-
dering Ge a valuable material for advancing modern technology.
Ge is a well-known semiconductor that typically exhibits a cubic
diamond (CD) structure (space group Fd3m1) at ambient pres-
sure and temperature. Through anvil press and nanoindentation
experiments, CD transforms into a metallic phase with the β-
Sn structure (I41/amd) upon applying non-hydrostatic pressure at
around 10 GPa,19–21 showing remarkable stability over a wide range
of pressures. Upon increasing pressure, β-Sn undergoes a series of
transitions into other high-density metallic phases, including sim-
ple hexagonal (SH) and HCP.22,23 Upon unloading from β-Sn, CD
is not recovered and different metastable allotropes are reached
instead. Experiments showed the presence of metastable BC8 (Ia3),
ST12 (P43 212), and R8 (R3) phases and led to believe that the
formation of such allotropes depends on stress conditions and
rate of decompression from β-Sn.24–28 Sustained interest in ST12
stems from its optical properties,29 with recent advancements lead-
ing to the synthesis of a large pure bulk sample,30 the production
of ST12 nanoparticles,31,32 and also the fabrication of nanowires.33

BC8 and R8 are observed to transform to a hexagonal diamond
(HD) phase under ambient pressure and temperature.34,35 This is
of great technological interest given HD’s predicted narrow direct
bandgap, rendering it well-suited for optoelectronic applications
compatible with silicon.12 It is also noteworthy that amorphous
Ge (a-Ge) has been extensively documented in various experi-
ments: observed as a byproduct during the unloading from β-Sn,
as a pathway to achieve β-Sn through loading and also through
observed transitions from a low-density to a high-density form
of a-Ge.36–38

II. METHODS
A. Ab initio calculations and simulation details

The Vienna Ab Initio Simulation Package (VASP)39,40 was used
to perform all the DFT calculations. The Ge 3d 4s 4p electrons
were treated as valence electrons by the projector augmented-
wave (PAW) method.41 Perdew–Burke–Ernzerhof (PBE)42 was used
as the exchange–correlation functional as it is a popular choice
given its reasonable accuracy over a wide range of systems. Since
metallic phases of Ge are demanding in terms of convergence, we
conducted convergence tests to find the optimal balance between
accuracy and efficiency. The truncation energy of the plane wave
basis was set to 500 eV, and the k-point grid spacing was fixed at
0.14 Å−1. Formation energies were computed by taking the energy
per atom difference between a given structurally optimized crystal
phase and the most stable one, the CD phase. Specifically, using
the selected k-point grid spacing, we observed that the forma-
tion energies for the 4H-HD, 2H-HD, BC8, ST12, and R8 phases
have already reached convergence, showing variations of less than
1 meV�atom upon further parameter refinement. However, for

denser metal structures, such as β-Sn, Fmmm, SH, HCP, BCC,
and FCC, there are still oscillations, with some reaching up to∼5 meV�atom in their computed energies. We still consider this
result as satisfactory since different DFT functionals would pre-
dict formation energies with even larger discrepancies. Since we are
interested in pressure-dependent phase transitions, we also mon-
itored the convergence in terms of pressure. Using the selected
k-point grid spacing of 0.14 Å−1, we observed that semiconducting
phases have already reached a convergence of about 0.01 GPa. Some
denser metallic structures, more demanding in terms of conver-
gence, still present oscillations, with some limited examples reaching≈1 GPa.

Molecular dynamics (MD) simulations were carried out in
LAMMPS43 using the DeePMD extension.44 To sample data, both
the canonical (NVT) and the isothermal–isobaric (NPT) ensem-
ble were used with an integrator time step of 1 fs, while the
temperature and pressure were set using a Nose–Hoover ther-
mostat and barostat45 with a relaxation time of 0.5 and 5.0 ps,
respectively.

To perform local structural optimizations, the Fast Inertial
Relaxation Engine (FIRE) optimizer46 within the Atomic Simula-
tion Environment (ASE)47 was employed by setting up the trained
MLIP as a calculator to obtain potential energies, forces, and
stresses.

When investigating transitions, a critical parameter of focus is
the activation energy barrier associated with the reaction mecha-
nism. This is significant because following transition state theory,48

the transition rate is directly proportional to the exponential of the
free energy barrier. Many different methods have been developed
to accurately locate such transition states,49–55 but only a few take
into account variable cell transformations. In this work, a gener-
alized solid-state nudged elastic band (ssNEB) method56 with the
climbing-image57,58 was employed for determining reaction path-
ways of crystal phase transitions involving both atomic and cell
degrees of freedom. We utilized this well-established technique by
means of its implementation for the ASE package in the TSASE
code.59

B. Dataset generation
In order to build the MLIP for Ge, a reference dataset for the

training process is generated using an iterative training procedure,
exploiting the concept of active learning.60–63

To thoroughly explore the kinetics of solid–solid phase transi-
tions, we integrated configurations explored by performing ssNEB
calculations into our dataset. This inclusion is pivotal, as solely rely-
ing on sampling configurations near metastable crystal structures
would not be sufficient for studying transition barriers.

The outlined procedure, schematically shown in Fig. 1, can be
summarized as follows: we selected many different Ge-crystalline
phases from the Materials Project (MP) database.64 These include
CD (mp-32), 4H-HD (mp-1091415), 2H-HD (mp-1007760), BC8
(mp-1080106), ST12 (mp-137), R8 (mp-128), β-Sn (mp-78), SH
(mp-1224349), Imma (mp-1061054), Fmmm (mp-148), HCP (mp-
1008733), BCC (mp-998883), and FCC (mp-12093). After repli-
cating these cells, the lattice parameters and the atomic positions
are perturbed to obtain many different configurations. A starting
incomplete dataset is built based on these structures that are labeled
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FIG. 1. Outline of the active learning approach utilized in this work. The procedure involves a cycle in which multiple NN models are trained. A model is tasked with sampling
numerous configurations via NPT MD and ssNEB under varying stress conditions. A visual representation illustrating how the enthalpy landscape may shift under applied
pressure is depicted in the top-right panel. The consistency in predicting energies (E), forces (F), and stresses (S) for these sampled structures is checked by comparison
of the previously trained models’ predictions. Configurations exhibiting significant deviations are identified as unreliable and subjected to DFT single-point calculations.
Subsequently, these configurations are incorporated into the dataset, and the models undergo further refinement through additional training iterations, thus completing the
cycle.

with energies, forces, and stresses computed through DFT calcu-
lations. An initial, coarse model trained on this dataset is used
to explore more configurations. This is done by sampling snap-
shots from NVT and NPT MD, and intermediate images from
ssNEBs. The energies, forces, and stresses of these structures are
computed again through single-point DFT calculations and added
to the existing starting dataset.

Multiple neural network (NN) models are then trained using
identical training sets but with different random seeds. Conse-
quently, these models would lead to diverse predictions for the
same configuration. If predictions are consistent among the differ-
ent models, it would suggest that the configuration aligns closely
with the training set; conversely, discrepancies indicate unreliability
in predictions. By employing this approach, we can select configu-
rations exhibiting unreliable predicted energies, forces, and stresses;
compute these observables again through single-point DFT calcula-
tions; and then, iteratively expand the training set by incorporating
such data deemed most relevant.

The sequential addition of inaccurately estimated configura-
tions into the training dataset during iterations is a crucial aspect
of constructing the MLIP.

The final dataset, upon which the actual model is trained, is
composed of roughly 2700 structures making up a total of roughly
112 thousand atomic environments, and it is split into 87% train-
ing and 13% validation sets. The split was done randomly, except
for certain structures that we specifically included in the training
set: phases at their minimum energy configuration and with lat-
tice parameter perturbations close to the values corresponding to
this minimum. Since many crystal-phase transitions are pressure-
induced, structures covering a wide range of pressure have been
sampled, reaching almost 100 GPa for some configurations. Most of
the sampling was conducted within a pressure range of 5 GPa ten-
sile to 30 GPa compressive strain. This range was chosen because
the most technologically relevant crystal phase transformations in
Ge, such as the formation of hexagonal Ge and ST12, occur after
loading of CD to β-Sn and subsequent unloading; these experiments
are typically performed below 20 GPa. Structures containing inter-
stitial atoms and vacancies were obtained by sampling MD starting
from manually crafted configurations. Disordered structures were
obtained by heating and then cooling some given crystal phases
to get highly defective and amorphous-like configurations. These
highly varied structures allow for a more comprehensive sampling of
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TABLE I. Summary of the dataset for the germanium model. The first column shows
the number of structures in the database, while the second one shows the number of
atoms (and, therefore, atomic environments) in the database for each structure type.

Structure type No. structures No. environments

Cubic diam. 253 9 312
Hex. diam. (4H) 158 6 528
Hex. diam. (2H) 185 8 016
BC8 173 6 000
ST12 274 8 508
R8 177 6 408
β-Sn 169 5 648
Simple hex. 150 4 808
Other phases 151 7 280
Interstitials 62 4 092
Vacancies 63 3 906
Disordered 278 26 640
Transitions 597 14 672
TOTAL ∼2700 ∼112 000

possible atomic environments, leading to a more robust interatomic
potential. Transition structures were obtained by sampling inter-
mediate images from ssNEB calculations between different crystal
phases over a wide range of pressures. In addition, after replicat-
ing these intermediate images, the lattice parameters and the atomic
positions are perturbed to sample more different configurations
close to the transition pathway found. This simple yet effective
procedure is an alternative to other methods, such as transition
path sampling,65 metadynamics,66 umbrella sampling,67 or many
more recent ones,68–72 employed for an extensive sampling of the
configuration space close to transition states and along a reaction
coordinate.

The dataset resulting from our iterative procedure is presented
in Table I.

C. Machine learning model
Utilizing our dataset, the NN potential was trained using the

Deep Potential Molecular Dynamic package (DeePMD-kit).73,74 The
deep potential (DP) model decomposes the total energy of the
system into atomic contributions by employing a local geomet-
ric description of the atomic environment. In this approach, a
multilayer NN is used as a regression model to describe the rela-
tionship between atomic configurations and energy. For each local
system, an embedding network converts the atomic coordinate
information into a descriptor matrix, which is fed into a fitting
network mapping the matrix to the local atomic energy. An in-
depth explanation of the NN architecture is given in the original
paper.73

To accurately capture the structural information of many Ge
crystal phases and different configurations, we used two types of
descriptors constructed from all the information (both angular and
radial) in the so-called DeepPot-SE framework:74 a, “se_e3” type
embedding that takes angles between two neighboring atoms as
input and an “se_e2_a” type embedding that takes the distance
between atoms as input. For the former descriptor, we used a cutoff

value of rc = 3.30 Å; a smoothing cutoff rs = 2.00 Å; and a three-
layer embedding network containing 8, 16, and 32 neurons. For the
latter, rc = 6.60 Å and rs = 3.30 Å were used along with a three-
layer embedding network containing 16, 32, and 64 neurons with
32 axis neurons. For the fitting net, three hidden layers with 160,
120, and 80 neurons in each layer were employed. We trained and
tested multiple models with various architectures and hyperparame-
ters to empirically identify optimal values that balance accuracy and
efficiency.

The family of loss functions L of the model, minimized by
using an Adam stochastic gradient descent optimizer75 with an
exponentially decreasing learning rate, takes into account energies,
forces, and virials by

L = pe

N
�E2 + p f

3N�i
��Fi�2 + pξ

9N
� �Ξ �2. (1)

Here, �E, �Fi, and �Ξ represent the root mean square error (RMSE)
in energy, force, and virial, respectively, comparing the training
data and the NNP prediction; N is the number of atoms; and pe,
p f , and pξ are the tunable weights. As suggested in the original
paper,73 to reduce the total training time, we progressively increased
pe and pξ and decreased p f during the training procedure, so that
the force term dominates at the beginning, while energy and virial
terms become important at the end. We decided to also use forces
and virials along with energies in the training process to signifi-
cantly reduce the number of reference data needed to train accurate
and robust models.74 Furthermore, a model that accurately predicts
stresses is crucial for the investigation of pressure-induced crystal
phase transitions.

Figure 2 shows the regression plots for energies, forces, and
stresses concerning both the training and validation datasets. Our
model demonstrates a satisfactory performance, with root mean
square errors (RMSEs) of ∼5 meV for energies and 0.1 eV�Å for
forces. Stress prediction is also robust, exhibiting an RMSE of less
than 0.5 GPa over a broad spectrum spanning ∼100 GPa.

III. RESULTS AND DISCUSSION
A. Benchmarking of the model

To assess the reliability of the model, a diverse test set consist-
ing of snapshots from MD at different temperatures and pressures
was also prepared. In addition, the main results concerning tran-
sition states are thoroughly discussed in the dedicated Sec. III B.
In detail, the test set comprises 125 diamond structures (CD,
4H-HD, and 2H-HD), corresponding to 7888 atomic environ-
ments, 74 low-density semiconductor structures (BC8, ST12, and
R8) (3984 atomic environments), 97 high-density metal structures
(6144 atomic environments), and 146 disordered or defective struc-
tures, encompassing amorphous configurations as well as those
with interstitial atoms or vacancies (13 401 atomic environments).
Even on this test set, our model exhibits strong predictive capa-
bility, showing minimal deviations in the regression plots shown
in Fig. 2.

Further evaluation focused on the prediction of formation
energies. To determine the DFT formation energies, we computed
the energy difference per atom between a specific structurally opti-
mized crystalline configuration and the cubic diamond reference.
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FIG. 2. Regression plots illustrating correlations of energies (left), forces (middle), and stresses (right) calculated by the trained deep neural network (NN) potential with
corresponding DFT values.
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FIG. 3. Formation energies for the different crystalline phases of Ge computed
both through DFT (in blue) and the developed MLIP (in red) are compared.

TABLE II. Formation energies (ε) and absolute error (�ε) computed by DFT and
the DP model for different crystalline phases of Ge. Three configurations not present
in the training-set are included in the table and separated by a horizontal line.

Phase εDFT (meV) εDP (meV) �ε (meV)

6H-HD 5.7 6.2 0.5
4H-HD 8.6 9.5 0.9
2H-HD 18.0 19.4 1.4
BC8 140.5 140.7 0.2
ST12 143.7 145.9 2.2
R8 146.3 148.4 2.1
β-Sn 229.3 233.2 3.9
Fmmm 237.4 241.5 4.1
SH 244.8 247.6 2.8
HCP 326.8 328.8 2.0
BCC 333.6 339.0 5.4
FCC 334.6 336.9 2.3
Pbam 31.8 56.7 24.9
P42/ncm 35.8 32.7 −2.9
P41212 38.7 73.9 35.2

Similarly, for estimating the DP formation energies, we followed
the same procedure, but utilizing structures optimized for the DP.
The comparison of the results obtained from such calculations is
presented in Fig. 3 and Table II.

The model performs remarkably well, with errors smaller than
5 meV for all the tested structures, except for the BCC phase. As
expected, the predictive ability of the model on the 4H-HD, 2H-HD,
BC8, ST12, and R8 phases is slightly better than the other higher
energy ones. Particularly noteworthy is the accurate prediction of the
6H-HD phase, despite its absence in the training set. As an interme-
diate phase positioned between CD and 4H-HD and characterized
by distinct stacking faults, the inclusion of CD, 4H-HD, and 2H-HD
in the training set seems to be enough to adequately encapsulate the
local atomic environments of the 6H-HD structure.

FIG. 4. Relationship between energy and volume per atom across different crys-
talline phases of Ge is depicted. The lines represent predictions from the MLIP,
while the markers represent the DFT calculations.

In addition, we analyzed the accuracy of energy vs volume
curves, as shown in Fig. 4, which provide insights into the volumet-
ric compression–expansion behavior of different phases. While the
model performs admirably for diamond phases and the other semi-
conductor structures BC8, ST12, and R8, it exhibits slightly lower
accuracy for metallic phases, especially in the volumetric expansion
region. This is because apart from the aforementioned issue con-
cerning convergence, the training set emphasized the sampling of
these phases under pressure conditions rather than volumetric dila-
tion, and it is generally understood that NN models are interpolative,
providing reliable results only within their training domain. This
decision was made because these phases are only competitive under
high pressures, rendering volumetric dilation less pertinent from a
physical standpoint.

Three additional phases, which were not part of the training
set, are also tested: Pbam, P42/ncm, and P41212. These structures,
recently predicted theoretically, display significantly lower energies
compared to the majority of metastable polymorphs observed in
Ge. For this reason, there is speculation that these phases might
emerge as metastable forms in experiments utilizing indentation
or anvil cells.76,77 The comparison presented in Table II, between
formation energies computed via DFT and those predicted by the
DP, reveals a larger error for such crystal phases absent from
the training set. To address this, any investigation aimed at these
structures would necessitate their inclusion in the training set
as well.

B. Transition pathways
Crystal phase transitions in germanium were extensively inves-

tigated utilizing ssNEB calculations and NPT MD. Our research
revealed several pathways between different crystal phases, help-
ing understand the phase transition mechanism and kinetics. As
our objective in this paper is to showcase and assess the devel-
oped potential, rather than conduct an exhaustive study of phase
transitions in Ge, in the following, we delve into a few illustrative
examples.
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FIG. 5. Minimum energy paths of the phase transitions: (a) CD to BC8, (b) CD to β-Sn under uniaxial stress, (c) ST12 to β-Sn under planar stress, and (d) R8 to β-Sn under
hydrostatic pressure. A comparison between the ssNEBs calculations performed with the DP model (solid lines and filled circles) and single-point DFT calculations of such
images (dashed lines and unfilled circles) is shown.

First, a collective transformation involving a 16-atom cell was
observed, connecting the CD and BC8 phases. Multiple cell geome-
tries have been selected as the starting and ending points for the
ssNEB calculation. We chose the geometries that required the least
amount of atomic displacement and bond breaking. The minimum
energy path for this transition, shown in Fig. 5(a), reveals a relatively
high predicted activation energy of ∼0.28 eV�atom. It is indeed com-
monly acknowledged that the reaction barrier during solid phase
transition can often be significant, as numerous chemical bonds are
simultaneously formed or broken as the crystal transitions from one
phase to another.

Similarly, another pathway connecting the CD and β-Sn phases
was identified, showing a remarkable agreement between ab initio
and NN prediction, as shown in Fig. 5(b). This transformation
is quite easy to identify because the relative positions of atoms
in the cell remain constant during the transformation, only the
lattice parameters change. This pathway, previously reported for
Silicon,78 occurs similarly in Ge. The activation barrier, estimated
to be ∼0.32 eV�atom, presents a significant obstacle. However, the
transformation is not hindered because stress can be applied to

modify the MEP and the transition energy barrier, which directly
affects the rate of phase transition. When subjected to exter-
nal stress, the energy landscape is transformed into an enthalpy
landscape, accounting for the work done by external stresses.
To explore this phenomenon, we conducted multiple calculations
using the ssNEB method with various levels of uniaxial stress.
Through this procedure, we determined that at ∼7 GPa of com-
pressive uniaxial stress, the transition is expected to be barrier-
less. To our knowledge, such an agreement between ab initio and
NN on the calculation of pressure-dependent energy barriers is
unprecedented.

NPT MD simulations were employed to investigate such
pressure-induced transformation. To examine the structural trans-
formation, we utilized a simulation cell measuring ∼56 × 56 × 76 Å,
containing 10 368 atoms. The temperature was set at 300 K (room
temperature), with uniaxial compressive stress along the z direction
at 7 GPa. Snapshots from such simulated transition are shown in
Fig. 6(a).

To ensure confidence in the model’s accuracy, we calculated the
deviation in the predicted force for each atom at each step using an
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FIG. 6. (a) Snapshot images of slices taken from the trajectories of NPT MD simulation for the pressure-induced transformation mechanism from CD to β-Sn, performed at
300 K and with uniaxial compressive stress along the z-direction at 7 GPa. Color coding is done based on coordination analysis in Ovito,79 with the CD and β-Sn structures
depicted in red and blue, respectively. (b) Average and peak force deviations during the MD simulation.

ensemble of three neural networks. We then computed the mean
deviation at each step and recorded the maximum deviation value
among all atoms. As shown in Fig. 6(b), force predictions are con-
sidered satisfactory, with mean and maximum deviations below 0.05
and 0.15 eV�Å, respectively, even at the transition midpoint where
deviations are higher.

We then identified a pathway connecting the ST12 and β-Sn
phases, shown by its corresponding MEP in Fig. 5(c). This transfor-
mation pathway, involving a 12-atom cell, aligns with a previously
proposed atomistic mechanism for such transition.80 The activa-
tion energy barrier here is ∼0.18 eV�atom, but it can be reduced
by applying stress. In particular, we observed that the application of
compressive planar stress, in this case, effectively reduces the barrier,
leading to a transition becoming barrierless at ∼12 GPa of applied
planar stress.

In addition, the impact of hydrostatic pressure on the R8
to β-Sn transition was investigated. The results indicate a grad-
ual reduction in the activation barrier with increasing pressure,
as shown in Fig. 5(d). Interestingly, a transition pathway via the

BCC phase emerges above 20 GPa. In this case, more inter-
mediate images have been added to the pathway, which has
been broken up into separate NEB calculations between all local
minima.

It is noteworthy that, as shown in Fig. 5, a comparison of the
ssNEB calculations performed using the MLIP with those conducted
using DFT reveals that the prediction of the energy of intermedi-
ate images in the transition from R8 to β-Sn is quite poor, with
errors reaching nearly 30 meV. This discrepancy arises because
this transition process was examined as a test after the develop-
ment of the MLIP, thus lacking intermediate structures in the
training set.

NPT MD simulations were once again utilized to explore this
pressure-induced transformation. A rhomboidal prism-shaped sim-
ulation cell housing 12 288 atoms was employed, with the temper-
ature maintained at 200 K and hydrostatic pressure at 23 GPa. The
pressure valued was chosen by conducting ss-NEB calculation on a
simulation cell like the one used for the results shown in Fig. 5(d).
We estimated the kinetic barrier at this pressure value to be about
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FIG. 7. (a) Snapshot images of slices taken from the trajectories of NPT MD simulation of the pressure-induced transformation mechanism from R8 to β-Sn via the BCC
intermediate phase, performed at 200 K and with hydrostatic pressure at 23 GPa. Color coding is done based on coordination analysis in Ovito, and it is used to clearly show
the R8 bulk (in blue), in which the BCC nucleation process occurs (in red) and finally transforms to get β-Sn (in blue again). (b) Average and peak force deviations during the
MD simulation.

8 meV�atom. Such a low barrier would allow us to see the transition
directly during MD in a short simulation.

Snapshots capturing during MD simulation are shown in
Fig. 7(a). The nucleation of the BCC structure can be observed
emerging from the R8 bulk and subsequently transform into poly-
crystalline β-Sn with defects. As shown in Fig. 7(b), the mean
deviations are ∼0.05 eV�Å and decrease below 0.02 eV�Å as the
transition progresses and more β-Sn forms.

The transition from β-Sn to R8, in reverse order with respect
to the one investigated here, has been experimentally observed
to occur in nanoindentation upon unloading at specific rates and
stress conditions. However, the R8 to β-Sn transition under loading
investigated in this work has been less studied, primarily because
obtaining R8 from β-Sn is a prerequisite. Therefore, for such a
transition, there are no existing values to compare our estimation
to. Still, our findings could be valuable for better understand-

ing cyclic nanoindentation experiments, such as those described
in Ref. 28.

IV. CONCLUSIONS AND PERSPECTIVES
In this work, an accurate and efficient MLIP tailored for inves-

tigating pressure-dependent crystal phase transitions in germanium
has been developed. The resulting DP is several orders of magni-
tude faster than the DFT calculations and scales linearly with the
number of atoms. Regression plots comparing NN predicted ener-
gies, forces, and stresses with the DFT calculations performed on a
suitable test set, together with the shown accurate prediction of for-
mation energies and energy–volume curves of many relevant crystal
phases, demonstrate the robustness of the model in describing such
metastable allotropes of Ge. Moreover, the iterative refinement of
the model through insertion in the training set of transition struc-
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tures sampled from ssNEB calculations performed with the model
itself has been shown as a simple yet effective practice to get the
model to predict accurate activation barriers.

Our MLIP, which can be downloaded together with the full
database,81 will serve as a valuable tool facilitating further advance-
ments in the study of Ge crystal phase transitions and their
applications.
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